AC- 5.05.2018 Item No. 4.53

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics and Telecommunication Engineering

Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Chairman's Preamble:

The curriculum in higher education is a living entity. It evolves with time; it reflects the ever changing needs of the society and keeps pace with the growing talent of the students and the faculty. The engineering education in India is expanding in manifolds and the main challenge is the quality of education. All stakeholders are very much concerned about it. The curriculum of Electronics & Telecommunication in Mumbai University is no exception. In keeping with the demands of the changing times, it contains innovative features. The exposure to the latest technology and tools used all over the world is given by properly selecting the subjects. It is designed in such a way to incorporate the requirements of various industries. The major emphasis of this process is to measure the outcomes of the program. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of post-graduation. So the curriculum must be refined and updated to ensure that the defined objectives and outcomes are achieved.

I, as Chairman Ad-hoc Board of Studies in Electronics and Telecommunication Engineering, University of Mumbai, happy to state here that, the heads of the department and senior faculty from various institutes took timely and valuable initiative to frame the Program Educational objectives as listed below.

Objectives:

- 1. To produce Electronics & Telecommunication engineers, having strong theoretical foundation, good design experience and exposure to research and development.
- 2. To produce researcher who have clear thinking, articulation and interest to carry out theoretical and/or applied research resulting in significant advancement in the field of specialization.
- 3. To develop an ability to identify, formulate and solve electronics and telecommunication engineering problems in the latest technology.
- 4. To develop the ability among students to synthesize data and technical concepts from applications to product design.

These are the suggested and expected main objectives, individual affiliated institutes may add further in the list. I believe that the small step taken in the right direction will definitely help in providing quality education to the stake holders.

This book of curricula is the culmination of large number of faculty members and supporting staff. It also reflects the creative contribution of hundreds of teachers – both serving and retired. I sincerely hope that the faculty and students of Electronics and Telecommunication in Mumbai University will take full advantage of dynamic features of curriculum and make teaching-learning process a truly sublime experience for all.

At the end I must extend my gratitude to all experts and colleagues who contributed to make curriculum competent at par with latest technological development in the field of Electronics & Telecommunication Engineering.

Dr. Uttam D. Kolekar Chairman, Ad-hoc Board of Studies in Electronics and Telecommunication Engineering

Program Structure for B.E. Electronics & Telecommunication Engineering (Rev. 2016) University of Mumbai (With Effect from 2017-2018) Semester V

Course	Course Name	Teaching	Scheme Hours)	(Contact	C	credits Assigned	1
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total
ECC501	Microprocessor & Peripherals Interfacing	4	-	-	4	-	4
ECC502	Digital Communication	4	-	-	4	-	4
ECC503	Electromagnetic Engineering	4	-	1@	4	1	5
ECC504	Discrete Time Signal Processing	4	-	-	4	-	4
ECCDLO 501X	Department Level Optional Course I	4	-	-	4	-	4
ECL501	Microprocessor & Peripherals Interfacing Lab	-	2	-	-	1	1
ECL502	Digital Communication Lab	-	2	-	-	1	1
ECL503	Business Communication & Ethics Lab	-	2+2*	-	-	2	2
ECL504	Open Source Technology for Communication Lab	-	2	-	-	1	1
ECLDLO 501X	Department Level Optional Lab I	-	-	2#	-	1	1
	Total	20	10	3	20	7	27

@ 1 hour to be taken as tutorial classwise #2 hours to be taken as either lab or tutorial based on subject requirement
*2 hours to be taken as tutorial batchwise

			Examination Scheme							
		Theory								
Course Code	Course Name	Internal Assessment			End Sem Exam		тw	Oral/ Prac	Total	
		Test1	Test 2	Avg	Ехаш	(Hrs)				
ECC501	Microprocessor & Peripherals Interfacing	20	20	20	80	03			100	
ECC502	Digital Communication	20	20	20	80	03			100	
ECC503	Electromagnetic Engineering	20	20	20	80	03	25		125	
ECC504	Discrete Time Signal Processing	20	20	20	80	03			100	
ECCDLO 501X	Department Level Optional Course I	20	20	20	80	03			100	
ECL501	Microprocessor & Peripherals Interfacing Lab						25	25	50	
ECL502	Digital Communication Lab	-					25	25	50	
ECL503	Business Communication & Ethics Lab						50		50	
ECL504	Open Source Technology for Communication Lab						25	25	50	
ECLDLO 501X	Department Level Optional Lab I						25		25	
	Total			100	400		175	75	750	

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

Course Code	Department Level Optional Course I
ECCDLO 5011	Microelectronics
ECCDLO 5012	TV & Video Engineering
ECCDLO 5013	Finite Automata Theory
ECCDLO 5014	Data Compression and Encryption

Course	Course Name	Teac (Co	hing Sch ntact Hou	eme ırs)		Credits Assigned		
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC601	Microcontrollers & Applications	4	-		4		4	
ECC602	Computer Communication Networks	4	-	-	4	-	4	
ECC603	Antenna & Radio Wave Propagation	4	-	-	4	-	4	
ECC604	Image Processing and Machine Vision	4	-		4		4	
ECCDLO 602X	Department Level Optional Course II	4	-	-	4	-	4	
ECL601	Microcontroller & Applications Lab	-	2	-	-	1	1	
ECL602	Computer Communication Network Lab	-	2	-	-	1	1	
ECL603	Antenna & Radio Wave Propagation Lab	-	2	-	-	1	1	
ECL604	Image Processing and Machine Vision Lab	-	2	-	-	1	1	
ECLDLO 602X	Department Level Optional Lab II	-	2	-	-	1	1	
	Total	20	10	-	20	5	25	

		Examination Scheme							
Course				The	ory				
Code	Course Name	Interna	al Assess	sment	End	Exam	тw	Oral &	Total
coue					Sem	Duration	1 · · ·	Prac	Iotui
		Test1	Test 2	Avg	Exam	(Hrs)			
ECC601	Microcontroller& Applications	20	20	20	80	03			100
ECC602	Computer Communication Network	20	20	20	80	03	-		100
ECC603	Antenna & Radio Wave Propagation	20	20	20	80	03			100
ECC604	Image Processing and Machine Vision Lab	20	20	20	80	03			100
ECCDLO 602X	Department Level Optional Course II	20	20	20	80	03			100
ECL601	Microcontroller & Applications Lab						25	25	50
ECL602	Computer Communication Network Lab						25	25	50
ECL603	Antenna & Radio Wave Propagation Lab						25	25	50
ECL604	Image Processing and Machine Vision Lab						25	25	50
ECLDLO 602X	Department Level Optional Lab II						25		25
	Total			100	400		125	100	725

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

Semester VI

Course Code	Department Level Optional Course II
ECCDLO 6021	Digital VLSI Design
ECCDLO 6022	Radar Engineering
ECCDLO 6023	Database Management System
ECCDLO 6024	Audio Processing

Subject Code	Subject Name	Teaching Scheme (Hrs.) Theory Practical Tutorial			Credits Assigned				
					Theory	Practi	cal Tutor	rial [Fotal
ECC501	Microproces	04			04				04
	sors &								
	Peripherals								
	•	•	•		•	•	•		
				Exami	nation Sch	eme			
Subject	Subject		Theo	ry Marks					
Codo	Name	Int	ernal asse	ssment		Term	Practical	Oral	Total
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Ulai	TUtal
ECC501	Microproces	20	20	20	80				100
	sors &								
	Peripherals								

Course prerequisite:

• Digital System Design

Course objectives:

- To understand the basic concepts of microcomputer systems.
- To develop background knowledge and core expertise in 8086 microprocessor and co-processor 8087.
- To write assembly language programs for 8086 microprocessor
- To understand peripheral devices and their interfacing to 8086 and to study the design aspects of basic microprocessor based system.

Course outcomes:

- Understand the basic concepts of microcomputer systems.
- Understand the architecture and software aspects of microprocessor 8086.
- Write Assembly language program in 8086.
- Know the Co-processor configurations.
- Interface peripherals for 8086.
- Design elementary aspect of microprocessor based system.

Module	Unit No	Topics	Hrs.
1.0	110.	Introduction to Microcomputer System	06
	1.1	Block diagram of microprocessor based system: CPU, I/O Devices, Clock, Memory, Concept of Address, Data and Control Bus and Tristate logic.	
	1.2	Need of Assembly Language and its Comparison with higher level languages	
	1.3	Need of Assembler and Compiler and their comparison.	
2.0		Architecture of 8086 Microprocessor	06
	2.2	8086 Architecture and organization, pin configuration.	
	2.3	Minimum and Maximum modes of 8086.	
	2.4	Read and Write bus cycle of 8086.	
3.0		Instruction set and programming of 8086	10
	3.1	8086 Addressing modes.	
	3.2	8086 Instruction encoding formats and instruction set.	
	3.3	Assembler directives.	
	3.4	8086 programming and debugging of assembly language program.	
		Programs related to: arithmetic, logical, delay, string manipulation,	
		stack and subroutines, input, output, timer/counters.	-
	3.5	Elementary DOS Programming: Introduction to int-21h services.	
4.0		Peripherals interfacing with 8086 and applications.	10
	4.1	8086-Interrupt structure.	-
	4.2	Programmable peripheral Interface 8255.	
	4.3	Programmable interval Timer 8254.	
	4.4	Elementary features of 8259A and 8257 and interface.	
	4.5	Interfacing 8255, 8254 with 8086 and their applications	
5.0		ADC, DAC interfacing with 8086 and its application	08
	5.1	Analog to Digital Converter (ADC) 0809	
	5.2	Digital to Analog Converter (DAC) 0808	
	5.3	Interfacing ADC 0809, DAC 0808 with 8086 and their	
		applications.	
	5.4	8086 based data Acquisition system.	
6.0		8086 Microprocessor interfacing	08
	6.1	8087 Math co-processor, its data types and interfacing with 8086.	
	6.2	Memory interfacing with 8086 microprocessor	
		Total	48

13

- 1. John Uffenbeck: "8086/8088 family: "Design, Programming and Interfacing", Prentice Hall, 2nd Edition
- B. B. Brey: "The Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor", Pearson Pub, 8th Edition
- 3. Hall D.V: "Microprocessor and Interfacing Programming and Hardware", Tata McGraw Hill, 2nd Edition.
- 4. Yu-Cheng Liu/Glenn A. Gibson: "Microcomputer Systems: The 8086/8088 Family Architecture, Programming and Design", Phi Learning.

Reference Books:

- 1. Peter Abel: "IBM PC ASSEMBLY LANGUAGE & PROGRAMMING", Phi Learning.
- 2. A. K. Ray and K. M. Burchandi: "Advanced Microprocessor and Peripherals, Architecture Programming and Interfacing", Tata McGrawHill, 3rd Edition
- 3. Don Anderson, Tom Shanley: "Pentium Processor System Architecture", MindShare Inc., 2nd Edition
- 4. National Semiconductor: Data Acquisition Linear Devices Data Book
- 5. Intel Peripheral Devices: Data Book.
- 6. The Intel 8086 family user manual.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject	Subject	T	eaching S	cheme	Credits Assigned					
Code	Name	(Hrs.) Theory Practical Tutorial			Theory	Practical Tutorial To			Fotal	
ECC502	Digital	04			04				04	
	Communicat									
	ion									
				Exami	nation Sch	eme				
Subject	Subject		Theo	ry Marks						
Code	Name	Inte	ernal asse	ssment		Term	Practical	Oral	Total	
Coue	i (unic			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141	
		Test 1	Test2	1 and Test 2	Exam					
ECC502	Digital	20	20	20	80				100	
	Communica									
	tion									

Prerequisites:

• Analog Communication

Course objectives:

- To identify the signals and functions of its different components,
- To learn about theoretical aspects of digital communication system and Draw signal space diagrams, compute spectra of modulated signals,
- To learn about error detection and correction to produce optimum receiver.

Course outcomes:

- Understand random variables and random processes of signal,
- Apply the concepts of Information Theory in source coding,
- Evaluate different methods to eliminate Inter-symbol interference,
- Compare different band-pass modulation techniques,
- Evaluate performance of different error control codes.

Module	Unit	T	Hrs.
<u> </u>	INU.	Probability Theory & Random Variables and	08
	1.1	Information, Probability, Conditional Probability of independent events, Relation between probability and probability Density, Raleigh Probability Density, CDF, PDF.	
	1.2	Random Variables, Variance of a Random Variable, correlation between Random Variables, Statistical Averages(Means),Mean and Variance of sum of Random variables, Linear mean square Estimation, Central limit theorem, Error function and Complementary error function Discrete and Continuous Variable, Gaussian PDF, Threshold Detection, Statistical Average, Chebyshev In-Equality, Auto- correction.	
	1.3	Random Processes	
2.0		Information Theory and Source Coding	06
	2.1	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and it's properties Mini Source Coding, Shannon's Source Coding Theorem,	-
		Shannon-Fano Source Coding, Huffman Source Coding	
	2.3	Differential Entropy, joint and conditional entropy, mutual information and channel capacity, channel coding theorem, channel capacity theorem	
3.0		Error Control Systems	12
	3.1	Types of error control, error control codes, linear block codes, systematic linear block codes, generator matrix, parity check matrix, syndrome testing ,error correction, and decoder implementation	
	3.2	Systematic and Non-systematic Cyclic codes : encoding with shift register and error detection and correction	
	3.3	Convolution Codes : Time domain and transform domain approach, graphical representation, code tree, trellis, state diagram, decoding methods.	
4.0		Bandpass Modulation & Demodulation	10
	4.1	Band-pass digital transmitter and receiver model, digital modulation schemes Generation, detection, signal space diagram, spectrum, bandwidth efficiency, and probability of error analysis of: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying (BPSK) Modulation, Quaternary Phase Shift Keying QPSK), M- ary PSK Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift Keying (MSK)	

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

5.0		Baseband Modulation & Transmission	04
	5.1	Discrete PAM signals and it's power spectra	
	5.2	Inter-symbol interference, Nyquist criterion for zero ISI,	
		sinusoidal roll-off filtering, correlative coding, equalizers, and	
		eye pattern	
6.0		Optimum Reception of Digital Signal	08
	6.1	Baseband receiver	
	6.2	Probability of Error	
	6.3	Optimum Receiver and Filter	
	6.4	Matched Filter and its probability of error	
	6.5	Coherent Reception	
		Total	48

- 1. H. Taub, D. Schlling, and G. Saha, "Principles of Communication Systems," Tata Mc- Graw Hill, New Delhi, Third Edition, 2012.
- 2. Lathi B P, and Ding Z., "Modern Digital and Analog Communication Systems," Oxford University Press, Fourth Edition, 2009.
- 3. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Fourth Edition, 2014.

Reference Books:

- 1. Sklar B, and Ray P. K., "Digital Communication: Fundamentals and applications," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 3. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 4. M F Mesiya, "Contempory Communication systems", Mc-Graw Hill, Singapore, First Edition, 2013.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject	Subject Name	T	eaching S (Hrs	cheme	Credits Assigned				
Couc	i taine	Theory	Practio	cal Tutorial	Theory	Practi	cal Tutor	ial [Fotal
ECC503	Electromagn	04		@1	04		01		05
	etic								
	Engineering								
				Exami	nation Sch	eme			
Subject	Subject		Theo	ry Marks					
Codo	Name	Inte	ernal asse	essment		Term	Practical	Oral	Total
Coue	1 (unite			Avg. Of Test	End Sem.	Work	& Oral	Ulai	Total
		Test 1	Test2	1 and Test 2	Exam				
ECC503	Electromagn	20	20	20	80	25			125
	etic								
	Engineering								

@ 1 hour to be taken as tutorial class wise

Course prerequisite:

- Vector Algebra and vector Calculus
- Various Co-ordinate system
- Two port network

Course objectives:

- To learn electromagnetics, including static and dynamic electromagnetic fields and waves within and at the boundaries of media.
- To learn mathematical skills, including Vectors and phasors and Partial differential equations.
- To learn Electromagnetic radiation and propagation in space and within transmission lines

Course outcomes:

After successful completion of the course student will be able to explain and evaluate EM fields and key physical parameters for:

- Fields and energies in simple planar, cylindrical, and spherical geometries, Fields within conducting and anisotropic media
- Electric and magnetic forces on charges, wires, and media Sinusoids and transients on TEM lines with mismatched impedances and tuning

Module No.	Unit No.	Topics						
1.0	1100	Electrostatics	07					
	1.1	Coulomb's Law & Electric Field Intensity, Electric Field due to point charge, line charge and surface charge distributions						
	1.2	Electric Flux Density, Gauss's Law and its Application to differential volume element, divergence, divergence theorem.						
	1.3	Electric potential, Relationship between Electric field & potential, Potential Gradient., electric dipole						
2.0		Electric Fields in Material Space	06					
	2.1	Energy density in electrostatic field, Current and current Density, continuity equation, Polarization in dielectrics						
	2.2	Capacitance, capacitance of parallel plate; spherical; cylindrical capacitors with multiple di-electrics, Boundary conditions						
	2.3	Poisson's and Laplace's equation, General procedures for solving Poisson's and Laplace's equations.						
3.0		Steady Magnetic Field	07					
	3.1	Biot-Savart's Law, Ampere's Circuital Law and its Applications, magnetic flux density, Magnetic Scalar and vectors potentials, Derivations of Biot-Savart's law and Ampere's law based on Magnetic Potential						
	3.2	Forces due to magnetic field, magnetic dipole, Classification of Magnetic Materials, Magnetic boundary conditions.						
4.0		Maxwell's Equation and Electromagnetic Wave Propagation	12					
	4.1	Faraday's law, Displacement current, Maxwell's equations in point form and integral form, Boundary conditions for time varying field , magnetic vector potential, Time harmonic field, Introduction to the concept of Uniform Plane Wave and Helmholtz equation.						
	4.2	Wave Propagation in Free Space, Lossy and Lossless Dielectrics and in Good Conductors. Reflection of Plane Wave, Poynting Vector, Wave Power, Skin Effect, Wave Polarization and Standing Wave Ratio						
5.0		Transmission Lines	10					
	5.1	Transmission line parameters, Transmission line equations, Input impedance, Standing wave ratio, Power, Transients on transmission lines.						
	5.2	Smith Chart, Applications of Smith Chart in finding VSWR ,and reflection coefficient, admittance calculations, impedance calculations over length of line.						

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

6.0		Applications of Electromagnetics	06
	6.1	Electrostatic discharge, Materials with high dielectric constant, Graphene, Inkjet printer, RF mems, Multidielectric systems, magnetic levitation, Memristor, Optical nanocircuits, Metamaterials, Microstrip lines and characterization of Data cables, RFID	
		Total	48

- 1. Engineering Electromagnetics, William H Hayt and John A Buck Tata McGraw-Hill Publishing Company Limited, Seventh Edition
- 2. Principles of Electromagnetics, Matthew N. O.Sadiku ,S.V.Kulkarni- Oxford university press, Sixth edition

Reference Books:

- 1. Electromagnetics with applications by J.D.Krauss and Daniel Fleisch fifth edition
- 2. Electromagnetic Field Theory Fundamentals, Bhag Singh Guru, Hüseyin R. Hiziroglu Cambridge University Press, Second Edition.
- 3. Electromagnetics, Joseph Edminister, , Mahmood Nahvi, Schaum Outline Series, Fourth edition.
- 4. R. K. Shevgaonkar, "Electromagnetic Waves" Tata McGraw Hil

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	cheme .)		Credi	ts Assigned	1		
		Theory	Practic	cal Tutorial	Theory	Practi	cal Tutor	ial 7	Fotal
ECC504	Discrete Time	04			04				04
	Signal								
	Processing								
								-	
				Exami	nation Sch	eme			
Subject	Subject		Theo	ry Marks					
Codo	Name	Internal assessment				Term	Practical	Oral	Total
Coue	1 (unit			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	1 and Test 2	Exam				
ECC504	Discrete Time	20	20	20	80				100
	Signal								
	Processing								

Course prerequisite:

• Signals & Systems

Course objectives:

- To develop a thorough understanding of DFT and FFT and their applications.
- To teach the design techniques and performance analysis of digital filters
- To introduce the students to digital signal processors and its applications.

Course outcomes:

- Understand the concepts of discrete-time Fourier transform and fast Fourier transform.
- Apply the knowledge of design of IIR digital filters to meet arbitrary specifications.
- Apply the knowledge of design of FIR digital filters to meet arbitrary specifications.
- Analyze the effect of hardware limitations on performance of digital filters.
- Apply the knowledge of DSP processors for various applications.

Module No.	Unit No.	Topics							
1.0	110.	Discrete Fourier Transform & Fast Fourier Transform	10						
	1.1	Definition and Properties of DFT, IDFT, Circular convolution of sequences using DFT and IDFT. Filtering of long data sequences: Overlap-Save and Overlap-Add Method for computation of DFT							
	1.2	Fast Fourier Transforms (FFT), Radix-2 decimation in time and decimation in frequency FFT algorithms, inverse FFT, and introduction to composite FFT.							
2.0		IIR Digital Filters	10						
	2.1	Types of IIR Filters (Low Pass, High Pass, Band Pass, Band Stop and All Pass), Analog filter approximations: Butterworth, Chebyshev I, Elliptic.							
	2.2	Mapping of S-plane to Z-plane, impulse invariance method, bilinear transformation method, Design of IIR digital filters (Butterworth and Chebyshev-I) from Analog filters with examples.							
	2.3	Analog and digital frequency transformations with design examples.							
3.0		FIR Digital Filters	10						
	3.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters. Frequency response, location of the zeros of linear phase FIR filters.							
	3.2	Design of FIR filters using Window techniques (Rectangular, Hamming, Hanning, Blackmann, Kaiser), Design of FIR filters using Frequency Sampling technique, Comparison of IIR and FIR filters.							
4.0		Finite Word Length effects in Digital Filters	06						
	4.1	Quantization, truncation and rounding, Effects due to truncation and rounding, Input quantization error, Product quantization error, Co- efficient quantization error, Zero-input limit cycle oscillations, Overflow limit cycle oscillations, Scaling.							
	4.2	Quantization in Floating Point realization of IIR digital filters, Finite word length effects in FIR digital filters.							
5.0		DSP Processors	06						
	5.1	Introduction to General Purpose and Special Purpose DSP processors, fixed point and floating point DSP processor, Computer architecture for signal processing, Harvard Architecture, Pipelining, multiplier and accumulator (MAC), Special Instructions, Replication, On-chip memory, Extended Parallelism.							

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016 22

	5.2	General purpose digital signal processors, Selecting digital signal processors, Special purpose DSP hardware, Architecture of TMS320CX fixed and floating DSP processors.	
6.0		Applications of Digital Signal Processing	06
	6.1	Application of DSP for ECG signals analysis.	
	6.2	Application of DSP for Dual Tone Multi Frequency signal detection.	
	6.3	Application of DSP for Radar Signal Processing.	
		Total	48

- 1. Emmanuel C. Ifeachor, Barrie W. Jervis, "*Digital Signal Processing*", A Practical Approach by, Pearson Education
- 2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015

Reference Books:

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.
- Sanjit K. Mitra, Digital Signal Processing A Computer Based Approach 4th Edition McGraw Hill Education (India) Private Limited.
- 3. Oppenheim A., Schafer R., Buck J., "*Discrete Time Signal Processing*", 2nd Edition, Pearson Education.
- 4. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2004.
- 5. L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2006.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject	Subject	T	eaching S (Hrs	Scheme		Credit	ts Assigne	ed	
Code	Iname	Theory	Practio	cal Tutorial	Theory	Practi	cal Tuto	rial	Total
ECCDLO 5011	Microelectron ics	04			04				04
				Examir	nation Sch	eme			-
Subject	Subject		Theo	ry Marks					
Code	Name	Internal assessment			_	Term	Practical O		Total
couc		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	014	lotui
ECCDLO	Microelectron	20	20	20	80				100
5011	ics								

Course prerequisite:

- Electronics Devices and Circuits- I
- Electronics Devices and Circuits- II

Course objectives:

- To understand integrated circuit biasing using MOSFET.
- To analyze single stage active load MOS amplifier.
- To analyze active load differential amplifier
- To understand implementation of passive components in ICs.

Course outcomes:

- Analyze various constant current source circuit using MOS
- Design and implement active load MOS amplifier.
- Design and implement active load differential amplifier

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Basics of MOSFETs	08
	1.1	Introduction to various fabrication process(in brief) Fabrication of	
		NMOS and PMOS transistors along with mask layout diagram,	
		Multi finger transistor, Scaling of MOSFET, Various Short channel	
		effects in MOSFET, Second order effects in MOSFET, MOS as	
		controlled resistor, MOS device capacitances	
2.0		Integrated Circuit Biasing & Active Loads using MOSFET	08
	2.1	Current Mirror, cascade current source, Wilson current source, bias	
		independent current source using MOSFET, DC analysis and small	
		signal analysis of MOS active load, DC analysis and small signal	
		analysis of MOS advanced active load	
3.0		Single Stage MOS Active Load amplifiers	08
	3.1	CS amplifier with current source load, CS amplifier with diode	
		connected load, CS amplifier with current source load, Common	
		gate circuit, Cascode amplifier, Double Cascoding, Folded Cascode.	
4.0		Active Load MOSFET Differential Amplifier	10
	4.1	Basic MOS Differential Amplifier, DC transfer characteristics,	
		small signal equivalent analysis, MOS differential amplifier with	
		active load, MOS differential amplifier with cascode active load,	
5.0		Passive Device Fabrication in IC	07
	5.1	Fabrication of inductors, fabrication of transformers, fabrication of	
		varactors, and fixed value capacitors.	
6.0		Power Amplifiers	07
	6.1	Class A, class B, Class C, Class D, Class E, Class F using MOSFET	
		Total	48

- 1. A. Sedra, K. Smith, adapted by A. Chanorkar "Microelectronic Circuits-Theory and Application *Advanced engineering mathematics*", Oxford Higher Education, 7th Edition
- 2. D. Neamen, "Electronic Circuits Analysis and Design", McGraw Hill Education, 3rd Edition
- 3. B. Razavi, "Design of Analog Integrated Circuits", McGraw Hill Education, Indian Edition

Reference Books:

1. B. Razavi,"R F Microelectronics", Pearson Publication, 2nd Edition

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

3. Question paper will comprise of 6 questions, each carrying 20 marks.

- 4. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject	Subject	T	eaching S (Hrs	Scheme S.)		Credi	ts Assigned	d	
Coue	Tame	Theory	Practi	cal Tutorial	Theory	Practi	cal Tutor	ial (Fotal
ECCDLO	TV & Video	04			04				04
5012	Engineering								
				Exami	nation Sch	eme			
Subject	Subject		Theo	ory Marks					
Code	Name	Internal assessment				Term	Practical	Oral	Total
Coue	1 (unite			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	1 and Test 2	Exam				
ECCDLO	TV & Video	20	20	20	80				100
5012	Engineering								

Course objectives:

- To understand basic concepts of TV system .
- To understand compression techniques
- To introduce to advanced systems and dvb standards

Course outcomes:

- Understand overview of TV system.
- Understand details of compression technique.
- Know about different dvb standards.
- Understand advanced digital systems

Module No	Unit No	Topics	Hrs.
1.0	110.	Fundamentals of TV system	10
	1.1	Interlaced scanning, Composite video signal, VSB(Vestigial sideband transmission), Channel bandwidth, Study of transmitter and receiver block diagram of monochrome Television	
	1.2	Camera Tubes: Vidicon, Image Orthicon	
2.0		Colour Television	10
	2.1	Colour Fundamentals, Chromaticity diagram, Frequency interleaving, compatibility considerations	7
	2.2	NTSC system characteristics, Encoder and Decoder block diagram, PAL system characteristics, Encoder and Decoder block diagram, Comparison of NTSC and PAL systems	,
3.0		Digital Video	08
	3.1 3.2 3.3	Basics of digital video Chroma subsampling:4:4:4,4:2:2,4:2:0,4:1:1 digital video formats Video compression standards:MPEG2:DCT coding, codec structure. Introduction to H.264/MPEG-4 AVC, Introduction to H.265	-
4.0	3.4	Set-Top Box	0.6
4.0	4.1	Introduction to DVB-T,DVB-T2,DVB-H,DVB-S,DVB-C Satellite Television	06
5.0		Advanced Digital TV Systems	10
	5.1 5.2 5.3 5.4 5.5	MAC MACd2 HDTV,SUHDTV Smart TV and its functions Introduction to IPTV Application of TV system as CCTV	-
6.0		Displays & Streaming Media Device	04
	6.1 6.2	LCD,LED Chromcast	40
	1	Total	48

- 1. Monochrome and colour Television by R.R.Gulathi
- 2. Television and video engineering by A.M. Dhake

Reference Books:

1. Digital Television (Practical guide for Engineers) by Fischer

Websites:

- 1. https://www.dvb.org/resources/public/factsheets
- 2. https://en.wikipedia.org/wiki/Digital_Video_broadcasting

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	T	cheme s.)		Credi	ts Assigne	d		
		Theory	Practio	cal Tutorial	Theory	Practi	cal Tuto	rial [Fotal
ECCDLO	Finite	04			04				04
5013	Automata								
	Theory								
	-	-	•	-	•	-			
				Exami	nation Sch	eme			
Subject	Subject		Theo	ry Marks					
Codo	Name	Internal assessment				Term	Practical Or		Total
Coue	1 (unite			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	1 and Test 2	Exam				
ECCDLO	Finite	20	20	20	80				100
5013	Automata								
	Theory								

Course prerequisite:

• Digital System Design

Course objectives:

This course provides in-depth knowledge of switching theory and the design techniques of digital circuits, which is the basis for design of any digital circuit. The main objectives are:

- To understand learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To design combinational logic circuits and its optimization and fault detection.
- To study Mealy and Moore synchronous and asynchronous sequential circuits design and their applications.

Course outcomes:

- Manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and to minimize combinational functions.
- Design and analyze small combinational circuits and to use standard combinational functions/ building blocks to build larger more complex circuits.
- Design and analyze small sequential circuits and devices and to use standard sequential functions/ building blocks to build larger more complex circuits.
- Design finite state machine understand the fundamentals and areas of applications for the integrated circuits.
- Perform symmetric and cascade threshold function and element

Module No.	Unit No.	Topics						
1.0		Combinational Logic	09					
	1.1	Notations of sets, Relations and Lattices, Venn diagram						
	1.2	Switching Algebra and functions, Boolean algebras and functions, Minimization of Boolean functions using map method and Tabulation Method, Prime implicant chart, Reduction of the chart, Branching method						
	1.3	Design of combinational Logic circuits, Contact networks, Functional decomposition and symmetric functions. Identification of symmetric functions						
2.0		Threshold Logic & Synthesis of Threshold Networks	06					
	2.1	Threshold Logic, Threshold elements, Capabilities and limitations of threshold logic, elementary properties, Linear separability, Unate functions, Synthesis of threshold functions, Cascading of threshold elements.						
3.0		Testing of Combinational Circuits	09					
	3.1	Reliable Design and fault Diagnosis, Fault Detection in combinational circuits, Fault location experiments, Fault Detection by Boolean Differences and path sensitization, Synthesis for testability, Multiple fault detection using map method, failure- Tolerant Design.						
4.0		Sequential Circuits	12					
	4.1	 Synchronous sequential circuits and iterative networks: Memory elements and their excitation functions; Synthesis of synchronous sequential circuits, Capabilities and limitations, State equivalence and Minimization, Minimization of completely specified and Incompletely specified sequential machines, Partition technique, Merger methods Asynchronous sequential circuits: Hazards, Synthesis, State assignment and minimization 	-					
	4.3	asynchronous sequential circuits Design,						
5.0		Structure and testing of Sequential Circuits	08					
	5.1	Structure of sequential Machines, Lattice of closed partitions, State Assignment using partitions, Reduction of output dependency, Input Independence and Autonomous clock.						
	5.2	Homing sequence, synchronizing sequence, Distinguishing sequence, Checking experiments, Machine identification, Recent Trends/Developments						

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

6.0		Algorithmic State Machine	04
	6.1	Introduction and components of ASM charts, Representation of sequential circuits using ASM charts, Example using ASM chart: 2	
		bit counter, binary multiplier, Weighing machine etc.	
		Total	48

- 1. Zvi Kohavi and Niraj K. Jha. "Switching and Finite Automata Theory", 3 Editions, Cambridge University Press.
- 2. Zvi Kohavi, "Switching Theory and Finite Automata", 2nd edition, Tata McGraw Hill
- 3. R. P. Jain, "Switching Theory and Logic Design", Tata McGraw Hill Education, 2003.
- 4. Lee Samuel C.," Modern Switching Theory and Digital Design", Prentice Hall PTR

Reference Books:

- 1. Morris Mano, "Digital Logic and Computer Design", Pearson Education
- 2. Samuel Lee, "Digital Circuits and Logic design", Prentice Hall.
- 3. William I. Fletcher, "An Engineering Approach to Digital Design", Prentice Hall.
- 4. John F. Wakerly, "Digital Design Principles and Practices", Pearson Education
- 5. A. Anand Kumar, "Switching Theory and Logic Design", PHI Learning private limited, 2014

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs	Scheme S.)	Credits Assigned				
		Theory	Practi	cal Tutorial	Theory	Practi	cal Tuto	rial '	Total
ECCDLO	Data	04			04				04
5014	Compression								
	& Encryption								
		•	-	-	-	-			
				Exami	nation Sch	eme			
Subject	Subject		Theo	ory Marks					
Codo	Name	Internal assessment				Term	Practical	Oral	Total
Coue	1 vuine			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10181
		Test 1	Test2	1 and Test 2	Exam				
ECCDLO	Data	20	20	20	80				100
5014	Compression								
	& Encryption								

Course objectives:

To teach the students

- Lossless and Lossy compression techniques for different types of data.
- Data Encryption Techniques.
- Network and Web Security.

Course outcomes:

- Implement text, audio and video compression techniques.
- Understand Symmetric and Asymmetric Key Cryptography schemes.
- Understand network security.

Module	Unit No	Topics	Hrs.					
1.0	110.	Introduction to Data Compression	12					
	1.1	Data Compression : Modelling and Coding, Statstical Modelling, Dictionary Schemes, LZ, Lossy Compression						
	1.2	Shannon – Fano Algorithm, Huffman Algorithm, Adaptive Huffman Coding						
	1.3	Difficulties in Huffman Coding, Arithmetic Coding – Decoding, Dictionary Based Compression, Sliding Window Compression: LZ- 77, LZ-78, LZW						
2.0		Image Compression	06					
	2.1	DCT, JPEG, JPEG – LS, Differential Lossless Compression, DPCM, JPEG – 2000 Standards						
3.0		Video and Audio Compression	08					
	3.1	Analog Video, Digital Video, MPEG – 2, H – 261 Encoder and Decoder						
	3.2	Sound, Digital Audio, μ-Law and A-Law Companding, MPEG – 1 Audio Layer (MP3 Audio Format)						
4.0		Data Security	06					
	4.1	Security Goals, Cryptographic Attacks, Techniques						
	4.2	Symmetric Key: Substitution Cipher, Transposition Cipher, Stream and Block Cipher						
	4.3	DES, AES						
5.0		Number Theory and Asymmetric Key Cryptography	08					
	5.1	Prime Numbers, Fermat's and Euler's Theorem, Chinese Remainder Theorem, Discreet Logarithms						
	5.2	Principles of Public Key Crypto System, RSA						
	5.3	Key Management, Deffie-Hellman Key Exchange						
	5.4	Message Integrity, Message Authentication and Hash Functions, SHA, H MAC, Digital Signature Standards						
6.0		Network Security	08					
	6.1	Email, PGP, S/MIME, Intrusion Detection System	ļ					
	6.2	Web Security Considerations, SSL Architecture, SSL Message Formats, TLS, Secure Electronic Transactions						
	6.3	Kerberos, X.509 Authentication Service, Public Key Infrastructure						
	Total							

- 1. Mark Nelson, Jean-Loup Gailly,"The Data Compression Book", 2nd edition, BPB Publications
- 2. Khalid Sayood, "Introduction to Data Compression", 2nd Edition Morgan Kaufmann.
- 3. William Stallings, "Cryptography and Network Security Principles and Practices 5th Edition", Pearson Education.
- 4. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw-Hill.

Reference Books:

- 1. David Salomon, "Data Compression: The Complete Reference", Springer.
- 2. Matt Bishop, "Computer Security Art and Science", Addison-Wesley.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)				Credits Ass	signed	
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECL501	Microproces sors & Peripherals Interfacing		02			1		1
	Laboratory							

	Subject Name	Examination Scheme									
Subject		Theory Marks									
Code		Internal assessment			End Som	Term	Practical	Oral	Tatal		
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sell. Wor Exam	Work	& Oral	Urai	TUtal		
ECL501	Microproces sors & Peripherals Interfacing Laboratory					25	25		50		

Suggested Experiment List

Experiments can be conducted on Assembler, Emulator or Hardware kits, in Assembly language.

- To write an assembly language program to perform 8-bit addition using multiple addressing modes, viz., direct, indirect, register, etc. addressing mode.
- To write an assembly language program to perform 16-bit Logical operations, viz., AND, OR, XOR, NAND, etc.
- To write an assembly language program to perform 32-bit Subtraction
- To write an assembly language program to generate 10 msec delay using software (register) and 8254
- To write an assembly language program to move 10 memory locations using String Instruction
- To write an assembly language subroutine (program) that takes a number as input and returns the square of it
- To write an assembly language program for interfaced 7 segment display or keypad or both, through 8255
- To write an assembly language program to read and save value from ADC
- To write an assembly language program to generate square / triangular / ramp waveforms using DAC
- To write an assembly language program for performing floating point division using 8087
- To write an assembly language program to use INT 21h DOS Functions, viz. read character, write character, get system date, etc

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016 36

Note: Mini Project can be considered as a part of termwork (Topic based on syllabus)

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL502	Digital Communicat ion Laboratory		02			1		1	

	Subject Name	Examination Scheme									
Subject		Theory Marks					Practical		Total		
Code		Internal assessment			End Som Term			Oral			
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	01ui	Total		
ECL502	Digital Communicat ion Laboratory					25	25		50		

Experiments should be performed on Bread-board or on experimentation kits.

Suggested Experiment List

- To understand sampling theorem and reconstruction
- To understand Various line codes
- To observe the performance of Return to Zero (RZ) types of line code
- To observe the performance of Non- Return to Zero (NRZ) types of line code
- Modulation and Demodulation of Binary Amplitude Shift Keying
- Modulation and Demodulation of Binary Frequency Shift Keying
- Modulation and Demodulation of Binary Phase Shift Keying
- Modulation and Demodulation of Quadrature Phase Shift Keying
- To observe the effect of signal Distortion using EYE-Diagram
- To Study and perform Linear Block codes
- To Study and perform cyclic codes

Note: Mini Project can be considered as a part of termwork (Topic based on syllabus)

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "**Laboratory session batch wise**". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016 38

experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECL503	Business Communicat ion & Ethics Laboratory	2 (classwise)	2 (batch wise)			2		2		

	Subject Name	Examination Scheme									
Subject		Theory Marks									
Code		Internal assessment			Fnd Som	Term	Practical	Oral	Total		
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Orai	Total		
ECL503	Business Communicat ion & Ethics Laboratory					50			50		

Course objectives:

To teach the students

- To inculcate professional and ethical attitude.
- To enhance effective communication and interpersonal skills.
- To build multidisciplinary approach towards all life tasks.

Course outcomes:

- Design a technical document using precise language, suitable vocabulary and apt style.
- Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- Deliver formal presentations effectively implementing the verbal and non-verbal skills.
| Module | Unit | Topics | Hrs. |
|------------|------------|---|------|
| <u>No.</u> | No. | Poport Writing | 05 |
| 1.0 | | Clinic (Decomposition) | 05 |
| | 1.1 | Objectives of Report Writing | |
| | 1.2 | Language and Style in a report | |
| | 1.3 | Types : Informative and Interpretative (Analytical, Survey and | |
| | | Feasibility) and Formats of reports (Memo, Letter, Short and Long | |
| | | Report) | |
| 2.0 | | Technical Writing | 03 |
| | 2.1 | Technical Paper Writing (IEEE Format) | |
| | 2.2 | Proposal Writing | |
| 3.0 | | Introduction to Interpersonal Skills | 09 |
| | 3.1 | Emotional Intelligence | |
| | 3.2 | Leadership and Motivation | |
| | 3.3 | Team Building | |
| | 3.4 | Assertiveness | |
| | 3.5 | Conflict Resolution and Negotiation Skills | |
| | 3.6 | Time Management | |
| | 3.7 | Decision Making | |
| 4.0 | | Meetings & Documentations | 02 |
| | 4.1 | Strategies for conducting effective meetings | |
| | 4.2 | Notice, Agenda and Minutes of a meeting | |
| | 4.3 | Business meeting etiquettes | |
| 5.0 | | Introduction to Corporate Ethics | 02 |
| | 5.1 | Professional and work ethics (responsible use of social media - | |
| | | Facebook, WA, Twitter etc.) | |
| | 5.2 | Introduction to Intellectual Property Rights | |
| | 5.3 | Ethical codes of conduct in business and corporate activities | |
| | | (Personal ethics, conflicting values, choosing a moral response and | |
| 6.0 | | making ethical decisions) | 07 |
| 0.0 | 61 | Croup Discussion | 0/ |
| | 0.1
6.2 | Desume Writing | |
| | 63 | Interview Skills | |
| | 64 | Presentation Skills | |
| | 6.5 | Statement of Purpose | |
| | 0.0 | Total | 28 |

References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "*Personal Development for Life and Work*", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, *"Business Correspondence and Report Writing"*, Tata McGraw-Hill Education
- 7. Ghosh, B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill.
- 8. Lehman, Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11. Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

List of Assignments:

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

Term Work:

Term work will consist of all assignments from the list. The distribution of marks for term

Work will be as follows:

TOTAL:	(50) Marks
Attendance	(05) Marks
Group Discussion	(10) Marks
Project Report Presentation	(15) Marks
Assignments	(10) Marks
Book Report	(10) Marks

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECL504	Open Source		2			1		1
	technology							
	for							
	Communicat							
	ion Lab							

		Examination Scheme								
Subject	Subject									
Code	Name	Internal assessment			End Som	Term	Practical	Oral	Total	
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Urai	IUtai	
ECL504	Open Source technology for Communicati on Lab					25	25		50	

Prerequisites:

- Principals of Communication Engineering
- Digital System Design
- Signals and Systems
- Electronics Circuits and Devices

Course objectives:

- Introduction to open source tools for communication lab.
- To simulate and analyze the various parameters of communication systems.
- To understand and implement the communication system/sub system.

Course outcomes:

- Learn open source programming tools for communication technology.
- Simulate and analyze the performance of communication system.
- Implement the communication system/subsystem.

Sample List of Experiments:

Note:	These are i	few exam	ples of ex	periments:	teachers	may pre	pare their	own list.
1,000	I nese are	iew chain		permenes	, couchers i	may pre	pur c unch	Own note

Sr. No	Title	Resource
1	Installation of	See the E-resource Links
	a. Python, NumPy and commPy or	
	b. Octave	
	or a Sailab	
	or	
	d. Xilinx using HDL	
	Or LT SDICE	
	e. LI SPICE Or	
	f. SEQUEL	
	Note: Any one tool or a combination of tools .	
2	Write a program to represent analog signal to digital	http://www.scilab.in/file
	signal (A to D conversion)	s/textbooks/ProfSenthik umar/DC.pdf
3	Write a program to generate basic functions	See the E-resource Links
	a. Unit Impulse Signal	
	b. Unit Step Signal	
	c. Generate Ramp Signal	
	d. Exponential Sequence	
	f. Cos Sequence	
4	Write a program to perform convolution and correlation	See the E-resource Links
	on the given signal.	
5	Plot the ASK, FSK and PSk Waveforms using	See the E-resource Links
	schad/python	
6	Write a program to apply Low/High Pass Filter on the	See the E-resource Links
	given signal.	
7	Write a program to read a speech signal and plot it and	See the E-resource Links
	play it.	

8	Write a program to apply Low/High Pass Filter on the given signal.	See the E-resource Links
9	Write a code to design Butterworth/Chebyshev filter using Scilab/Octave/Python.	See the E-resource Links
10	Write a program to calculate Hamming distance using Scilab/python.	See the E-resource Links
11	Encoding and decoding of convolutional codes	1. <u>https://github.com/vee</u> resht/CommPy/blob/mas ter/commpy/examples/c onv_encode_decode.py 2. <u>https://media.readthed</u> ocs.org/pdf/commpy/late st/commpy.pdf
12	Design and programming of of 1-bit Full adder and testing using Testbench.	See the E-resource Links
13	Design and programming of 4-bit adder using Full adder and testing using Testbench	See the E-resource Links
14	Design and programming of 8:1 Mux and testing using Testbench	See the E-resource Links
15	Design and programming of 3:8 Decoder and testing using Testbench	See the E-resource Links
16	Design and programming of D Latch and D Flip Flop and testing using Testbench	See the E-resource Links
17	Design and programming of T FF and testing using Testbench	See the E-resource Links
18	Design and programming of Counter and testing using Testbench	See the E-resource Links
19	Design and programming of RAM and testing using Testbench	See the E-resource Links
20	Design and Programming of FSM and testing using	See the E-resource Links

	Testbench	
21	Design and Simulation of Basic diode Circuits like Clipper, Clapper, Voltage Doubler using Sequel or LT Spice	See the E-resource Links
22	Design and simulation of single stage and Multistage BJT amplifier using Sequel or LT SPICE	See the E-resource Links
23	Design and simulation of Differential amplifier and current mirror circuit using Sequel or LT SPICE	See the E-resource Links
24	Design and Simulation of Basic Op-circuits like Inverting amplifier, Non-Inverting amplifier, Difference amplifier, I to V convertor, V to I Convertor etc using Sequel ot LT SPICE.	See the E-resource Links
25	Design and Simulation of oscillators and Filters using Op-amp using LT SPICE or Sequel.	See the E-resource Links
26	Simulation of non-linear applications of Op-amp like Schmitt Trigger, Window Detector, Precision Rectifier, Square Wave Generator etc using LT SPICE or Sequel.	See the E-resource Links

List of Mini projects:

Note: These are few examples of mini projects; teachers may prepare their own list.

- 1. Implementing liner block code of (7,4).
- 2. Implementing FSK TX and RX.
- 3. Implementing Nyquist criteria with noisy environment.

Suggested List of Mini Projects on Xilinx using HDL Programming

- 4. 16 bit Multiplier
- 5. 32 Bit CLA adder
- 6. Shift and Add Multiplier
- 7. GCD Calculator
- 8. 3-bit FIR Filter design
- 9. 4 Bit ALU
- 10. 4-bit Comparator
- 11. 2's Complement adder

Suggested List of Mini Projects using LT SPICE or SEQUEI

- 12. Audio Equalizer using Op-amp.
- 13. Strain Guage amplifier Circuit.
- 14. Synchronous DC-DC Buck Convertor.
- 15. RTD based 4 to 20mA transmitter circuit.

Online Repository Sites:

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

E-Resources:

- 1. Spoken Tutorial : <u>http://spoken-tutorial.org/</u>
- 2. Scilab: <u>http://www.scilab.org/</u>
- 3. Octave: <u>https://www.gnu.org/software/octave/</u>
- 4. Python: <u>https://www.python.org/</u>
- 5. Xilinx using HDL: <u>https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html</u>
- 6. LT SPICE : <u>http://www.linear.com/designtools/software/</u>
- 7. SEQUEL: <u>https://www.ee.iitb.ac.in/~sequel/</u>

Note: Mini Project can be considered as a part of termwork (Topic based on syllabus)

Term Work:

At least 08 Experiments covering entire syllabus must be given during the "**Laboratory session batch wise**". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 5011	Microelectro nics Laboratory			02		1		1	

	Subject	Examination Scheme								
Subject Code										
	Name	Inte	ernal ass	essment	End Som	Term	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work				
ECLDLO	Microelectro					25			25	
5011	nics									
	Laboratory									

Term Work:

At least 08 tutorials covering entire syllabus must be given during the "**Tutorial session batch** wise"

Term work assessment must be based on the overall performance of the student with every tutorial graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 5012	TV & Video Laboratory			02		1		1	

	Subject Name	Examination Scheme								
Subject		Theory Marks								
Code		Internal assessment			End Som	Term	Practical	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	<u> </u>	Total	
ECLDLO 5012	TV & Video Laboratory					25			25	

Suggested List of Experiments

- To study CVS
- Measurement of horizontal and vertical scanning frequency
- To study sound section of TV receiver
- To study receiver sections by using fault simulation switches
- To study DTH receiver
- To study HDTV
- To study set top box trainer
- To study LCD display
- To study LED display

Term Work:

At least 8 Practicals/ Tutorials covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 5013	Finite Automata Theory			02		1		1	

Subject Code	Subject Name	Examination Scheme									
		Theory Marks									
		Internal assessment			End Som	Term	Practical	Oral	Total		
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Ulai	Total		
ECLDLO	Finite					25			25		
5013	Automata										
	Theory										

List of Mini Projects:

- 1. Combinational circuits
- 2. Synchronous sequential circuits (Finite state machine)
- 3. Asynchronous sequential circuits (Finite state machine)
- 4. Algorithmic state machine

Note: Mini Project can be considered as a part of term-work.

Term Work:

At least 8 Tutorials covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 5014	Data Compression & Encryption		02			1		1	

Subject Code	Subject Name	Examination Scheme									
		Theory Marks									
		Internal assessment			End Som	Term	Practical	Oral	Total		
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Orai	Total		
ECLDLO	Data					25			25		
5014	Compression										
	& Encryption										

Suggested Practical List:

- Huffman Code.
- Adaptive Huffman Code.
- Arithmetic Code.
- LZW Compression and Decompression.
- Companding Implementation.
- Implementation of DCT.
- RSA and MD5 Algorithm.
- Packet Analyzer.
- PGP (Pretty Good Privacy).
- Vulnerability Scanner.
- Intrusion Detection System.
- Firewall.
- SSL

Note: Mini Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful,

interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	T	eaching S (Hrs	Scheme s.)	Credits Assigned				
		Theory	Theory Practical Tutorial			Practi	cal Tuto	rial (Fotal
ECC601	Microcontroll	04			04				04
	ers &								
	Applications								
	-			-					
				Exami	nation Sch	eme			
Subject	Subject		Theo	ry Marks					
Codo	Name	Inte	ernal asse	essment		Term	Practical	Oral	Total
Coue	Tume			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10181
		Test 1	Test2	1 and Test 2	Exam				
ECC601	Microcontrol	20	20	20	80				100
	lers &								
	Applications								

Course objectives:

- To develop background knowledge and core expertise in microcontrollers.
- To understand peripheral devices and their interfacing to microcontrollers.
- To write programs for microcontrollers and their applications in Assembly and Embedded C Language.

Course outcomes:

- Understand the detailed architecture of 8051 and ARM7 microcontroller.
- Study the in-depth working of the microcontrollers and their Instruction set.
- Interface various peripheral devices to the microcontrollers.
- Write Assembly language and Embedded C program for microcontrollers.

Module	Unit No	Topics	Hrs.
1.0	INO.	8051 Microcontroller	12
	1.1	Comparison between Microprocessor and Microcontroller	
	1.1		_
	1.2	Features, architecture and pin configurations	
	1.3	CPU timing and machine cycle	
	1.4	Input / Output ports	
	1.5	Memory organization	
	1.6	Counters and timers	
	1.7	Interrupts	
	1.8	Serial data input and output	
2.0		8051 Programming	08
	2.1	Instruction set	
	2.2	Addressing mode	1
	2.3	Assembler Directives	1
	2.4	Programs related to: arithmetic, logical, delay, input, output, timer.	
		counters, port, serial communication, and interrupts	
3.0		8051 Interfacing and Applications	06
	3.1	Interfacing of Display: LED, LCD and Seven Segment display	
	3.2	Stepper Motor and Relay	1
	3.3	UART	
4.0		ARM7: A 32 bit Microcontroller	08
-	4.1	The RISC and the CISC design philosophy	
	4.2	Concept of Cortex-A, the Cortex-R and the Cortex-M	
	4.3	Features of ARM Microcontroller	
	4.4	Pipeline Architecture	
	4.5	Registers	
	4.6	Exceptions, Interrupt and Vector Table	
	4.7	Memory Management	
5.0		ARM7 Programming	08
	5.1	Data Processing Instructions	
	5.2	Conditional and Branching Instructions	
	5.3	ARM-THUMB Interworking	
	5.4	Single-Register Load-Store Instructions	
	5.5	Stack Instructions	
	5.6	Software Interrupt Instructions	
6.0		ARM Programming with Embedded C	06
	6.1	General Purpose Input Output	
	6.2	Timer Mode	1
	6.3	Pulse – Width Modulator Configuration	1
		Total	48

- 1. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "The 8051 Microcontroller & Embedded systems", Pearson Publications, Second Edition 2006.
- 2. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C' ", Cengage Learning, Edition 2010.
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. Andrew Sloss, Dominic Symes, and Chris Wright, "ARM System Developer's Guide" Morgan Kaufmann Publishers, First Edition 2004.
- 5. Lyla Das, "Embedded Systems: An Integrated Approach", Pearson Publication, First Edition 2013
- 6. James A. Langbridge, "Professional Embedded Arm Development", Wrox, John Wiley Brand& Sons Inc., Edition 2014

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject	Subject Name	Т	eaching S (Hrs.	cheme		Credi	ts Assigne	d	
Coue	Tame	Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial '	Total
ECC602	Computer	04		04				04	
	Communicati								
	on Networks								
	-	•	•		-	-			
				Exami	nation Sch	eme			
Subject	Subject		Theor	ry Marks					
Codo	Name	Inte	ernal asses	ssment		Term	Practical	Oral	Total
Coue	1 vuine			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10181
		Test 1	Test2	1 and Test 2	Exam				
ECC602	Computer	20	20	20	80				100
	Communicati								
	on Networks								

Course Pre requisite:

• Analog Communication

Course objectives:

- To introduce analysis and design of computer and communication networks.
- To design and configure a network for an organization. To implement client-server socket programs.
- To analyse the traffic flow and the contents of protocol frames.

Course outcomes:

- Design a small or medium sized computer network including media types, end devices, and interconnecting devices that meets a customer's specific needs.
- Perform basic configurations on routers and Ethernet switches.
- Demonstrate knowledge of programming for network communications.
- Learn to simulate computer networks and analyse the simulation results.
- Troubleshoot connectivity problems in a host occurring at multiple layers of the OSI model.
- Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Module	Unit	Topics	Hrs.
<u> </u>	INU.	Introduction	06
	1.1	Network Applications	
	1.2	Network Hardware	
	1.3	Network Software	
	1.4	Reference Models, overview of TCP/IP, layer Functions, services, sockets and ports, Encapsulation.	
2.0		Introduction to Physical layer Services and System	08
	2.1	Introduction to Physical media, Coax, RJ 45, fiber, twisted pair, DSL, HFC, WiMax, cellular, satellite, and telephone networks, bit transmission, frequency division multiplexing. time division multiplexing.	
3.0		The Data Link Layer	08
	3.1	Data link Layer Design Issues	
	3.2	Error Detection and Correction	
		Elementary Data Link Protocols, Sliding Window Protocols	
		The Data Link Laver in The Internet.	
40		The Medium Access Sub- Laver	06
	4.1	Channel Allocation Problem.	00
	4.2	Multiple Access Protocols.	
5.0		The Network Layer	10
	5.1	Network Layer Design Issues.	
	5.2	Routing Algorithms.	
	5.3	Congestion Control Algorithms, Quality of Service.	
	5.4	Internetworking.	
	5.5	The Network Layer In The Internet: The IP Protocol, IPv4 header, IP	
		Addressesing, Subnetting.	
	5.6	Internet Control Protocols, The Interior Gateway Routing Protocol:	
		OSPF, The Exterior Gateway Routing Protocol: BGP.	10
0.0	6.1	The Transport Layer	10
	0.1 6.2	Elements of Transport Distances	
	<u> </u>	Elements of Transport Protocols.	
	6.4	The Internet Transport Protocol: TCP-Introduction to TCP. The TCP	
	0.4	Service Model The TCP Protocol	
	6.5	The TCP Segment Header.	
	6.6	TCP Connection Establishment, TCP Connection Release.	
	6.7	Modeling TCP Connection Management.	
	6.8	TCP Transmission Policy.	
	6.9	TCP Congestion Control.	
	6.10	TCP Timer Management, Transactional TCP.	

Total	48

- 1. A. S. Tanenbaum,"Computer Networks", 4th edition, Prentice Hall
- 2. B. F. Ferouzan,"Data and Computer Communication", Tata McGraw Hill.

Reference Books:

- 1. Peterson & Davie, "Computer Networks", 2nd Edition, Morgan Kaufmann.
- 2. Kurose, Ross, "Computer Networking", Addison Wesley
- 3. S. Keshav, "An Engg, Approach To Computer Networking", Addison Wesley.
- 4. W. Richard Stevens, "TCP/IP Volume1, 2, 3", Addison Wesley.
- 5. D. E. Comer, "Computer Networks And Internets", Prentice Hall.
- 6. B. F. Ferouzan, "TCP/IP Protocol Suite", Tata McGraw Hill.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs	cheme .)		Credi	ts Assigne	d	
		Theory Practical Tutorial Theory P			Practi	cal Tuto	rial /	Fotal	
ECC603	Antenna &	04			04				04
	Radio Wave								
	Propagation								
		•	•		•				
				Exami	nation Sch	eme			
Subject	Subject		Theor	ry Marks					
Codo	Name	Inte	ernal asse	ssment		Term	Practical	Oral	Total
Coue	1 (unit			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	1 and Test 2	Exam				
ECC603	Antenna &	20	20	20	80				100
	Radio Wave								
	Propagation								

Prerequisites:

- Electromagnetic Field
- Two port network
- Transmission Line

Course objectives:

- To learn fundamental parameters of Antenna
- To learn about linear wire antenna elements and Antenna arrays
- To learn about Special types of Antennas
- To learn about Antenna measurements and radio wave propagation

Course outcomes:

- Define Basic antenna parameters like radiation pattern, directivity and gain.
- Derive the field equations for the basic radiating elements like linear wire antenna and loop antenna.
- Design of uniform linear and planar antenna arrays using isotropic and directional Sources.
- Implement special types of Antennas like microstrip antennas and reflectors.

Module	Unit	Topics	Hrs.
<u>No.</u>	No.	Antonno Fundamentale	08
1.0	11	Antenna Fundamentais	Vð
	1.1	Introduction, Radiation Mechanism, basic antenna parameters, Radiation pattern, radiation power density, radiation intensity, Beamwidth, directivity, Antenna efficiency, Gain, beam efficiency, bandwidth, polarization, input impedance, antenna vector effective length and equivalent areas, Antenna radiation efficiency, FRIIS transmission equation	
	1.2	Basic concepts of Maxwell's equation, vector potential, wave equation, near field and far field radiation, dual equations for electric and magnetic current sources.	
2.0		Wire Elements: Dipoles, Monopoles, Loops and Helical	12
	2.1	Infinitesimal dipole, radiation fields, radiation resistance, radiation sphere, near field, far field directivity, small dipole, finite length dipole, half wave length dipole, linear elements near or on infinite perfect conductors, Monopole antenna, Folded dipole. Design of dipole and monopole antenna	
	2.2	Loop Antenna: Small circular loop, comparison of small loop with short dipole, Ferrite loop, radiation patterns its parameters and their application.	
	2.3	Helical Antennas: Input impedance matching, Axial mode and normal mode propagation, Circular polarization using Helical Antenna	
3.0		Arrays	12
	3.1	Linear arrays, Array of two isotropic point sources, linear arrays of N elements, principle of pattern multiplication applicable to non- isotropic sources, Phase scanning arrays, broadside and End-fire Array, Increased Directivity end fire array, Calculations of Directivity, Beam width, Maxima and null directions for N-element Array. Introduction to planner and circular arrays	
	3.3	Design of Yagi antenna and Log Periodic antenna	
4.0		Aperture Antennas	06
	4.1	Horn Antennas :E-Plane Sectoral Horn, H-Plane Sectoral Horn, Pyramidal Horn, Conical Horn Reflector Antennas: Introduction, Plane Reflector, Corner Reflector, Parabolic Reflector, Design considerations	
5.0		Patch Antenna	04
	5.1	Microstrip antenna (MSA): Introduction, Feeding Techniques, Regular Shape MSAs (Rectangular, Circular, Equilateral Triangular), Design of Regular shape MSAs	
6.0		Antenna Measurements & Wave Propagation	06

6.1	Antenna Measurements: Measurement of Antenna parameters:								
	Input Impedance, Radiation Pattern, Gain (Two and Three antenna								
	method), Polarization.								
6.2	Ground Wave Propagation: Ground waves, effect of Earth's								
	Curvature on Ground wave propagation, impact of imperfect earth								
6.3	6.3 Sky Wave Propagation								
	Ionosphere and Earth magnetic field effect, Critical frequency, Angle of incidence, Maximum usable frequency, Skip distance, Virtual height, Variations in ionosphere and Attenuation and fading of waves in ionosphere								
6.4	Space Wave Propagation								
	Total	48							

- 1. C. A. Balanis, Antenna Theory: Analysis and Design (3rd eds.), John Wiley & Sons, Hoboken, NJ, 2005.
- 2. J. D. Kraus, R. J. Marhefka, A.S. Khan "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011
- 3. G. Kumar, K. P. Ray, Broadband Microstrip Antenna, Artech House, 2002.

Reference Books:

- 1. Stutzman, Theile, "Antenna Theory and Design", John Wiley and Sons, 3rd Edition
- 2. R. E. Collin, "Antennas and Radio Wave Propagation", International Student Edition, McGraw Hill.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs.	cheme .)		Credi	ts Assigne	d	
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial '	Fotal
ECC604	Image Processing & Machine Vision	04			04				04
				Exami	nation Sch	eme			
Subject	Ch4		Theor	ry Marks					
Code	Name	Int	ernal asses	ssment		Term	Practical	Oral	Total
couc		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral		I Juan

Test 1Test 21 and Test 2Exam----100ECC604Image20202080----100Processing &
Machine
Vision------100

Prerequisites:

- Signals and Systems
- Discrete Time Signal Processing

Course objectives:

- To cover the fundamentals and mathematical models in digital image processing and Machine Vision
- To develop time and frequency domain techniques for image enhancement.
- To expose the students to classification techniques in Machine Vision
- To develop Applications using image processing and Machine Vision

Course outcomes:

After successful completion of the course student will be able to

- Understand theory and models in image processing.
- Interpret and analyze 2D signals in Spatial and frequency domain through image transforms.
- Apply quantitative models of image processing for segmentation and restoration for various applications.
- Find shape using various representation techniques and classify the object using different classification methods.

Module	Unit	Topics	Hrs.
<u>No.</u>	No.	Digital Image Fundamentals	04
	1.1	Introduction – Origin – Steps in Digital Image Processing , Components, Elements of Visual Perception – Image Sensing and Acquisition, Image Sampling and Quantization – Relationships between pixels, Transformation: Orthogonal, Euclidean, Affine	
	1.2	Color Image Processing: Color Fundamentals Color models.	
2.0		Image Transforms	06
	2.1	1-D DFT, 2-D Discrete Fourier Transform and Its Inverse, Some Properties of 2D DFT ,Walsh -Hadamard, Discrete Cosine Transform, Haar Transform	
3.0		Image Enhancement	08
	3.1	Image Negative, Log Transform, Power Law transform, Histogram equalization and Histogram Specification	
	3.2	Spatial Domain : Basics of Spatial Filtering, The Mechanics of Spatial Filtering, Generating Spatial Filter Masks–Smoothing and Sharpening Spatial Filtering	
	3.3	Frequency Domain :, The Basics of Filtering in the Frequency Domain, Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Laplacian, Unsharp Masking and Homomorphic filters	
4.0		Mornhological & Imaga Postoration	06
4.0	4.1	Morphology: Erosion and Dilation Opening and Closing The Hit-	00
		or-Miss Transformation	
	4.2	Restoration : Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters	
5.0		Patch Antenna	12
	5.1	Point, Line, and Edge Detection: Detection of Isolated Points, Line detection, edge models, basic and advance edge detection, Edge linking and boundary detection, Canny's edge detection algorithm	
	5.2	Thresholding : Foundation, Role of illumination, Basic Global thresholding	
	5.3	Region Based segmentation : Region Growing, Region Splitting and merging	
	5.4	Region Identification , chain code, simple geometric border representation, Fourier Transform of boundaries, Boundary description using segment sequences, B-spline representation	10
6.0		Boundary Description & Object Recognition	12

6.1	Texture: Statistical Texture Description Methods- Methods based on	L								
	spatial frequencies, co-occurrence matrices, edge frequency, primitive	5								
	length, Law's texture energy measures									
6.2	Object Recognition	Deject Recognition								
	Knowledge representation, Classification Principles, Classifier	•								
	setting, Classifier Learning, Support vector machine, cluster analysis									
	Total	48								

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Cengage Engineering, 3rd Edition, 2013
- 2. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,

Reference books:

- 1. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 2. W Pratt, "Digital Image Processing", Wiley Publication, 3rd Edition, 2002

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Т		Credi	ts Assigne	ed			
		Theory	Practica	al Tutorial	Theory	Practi	cal Tuto	rial	Total
ECCDLO	Digital VLSI	04			04				04
6021	Design								
	-	•	•	-	-	-			
				Exami	nation Sch	eme			
Subject	G1		Theor	y Marks					
Codo	Name	Internal assessment				Term	Practical	Ora	Total
Coue		Test 1	Test2	Avg. Of Test and Test 2	End Sem. Exam	Work	& Oral	Ula	IUtai
ECCDLO	Digital VLSI	20	20	20	80				100
6021	Design	_0		_ 0					

Prerequisites:

- Digital System Design
- Microelectronics

Course objectives:

- To highlight the circuit design issues in the context of Digital VLSI technology
- A profound understanding of Digital VLSI design circuits using different design styles.
- To provides an exposure to RTL design and programming

Course outcomes:

- Understand the semiconductor technology, scaling and performance.
- Realize logic circuits with different design styles.
- To understand operation of memory, storage circuits and data path elements.
- Simulate and synthesize digital circuits using HDL language.
- Demonstrate an understanding of system level design issues such as protection, clocking, and routing.
- Learn the RTL design techniques and methodologies

Module	Unit No	Topics	Hrs.
1.0	110.	MOS Circuit Design Styles	10
	1.1	Static CMOS, Dynamic CMOS, Pseudo NMOS, Domino, C ² MOS, NORA logic, NP Domino logic	
	1.2	Realization of Multiplexer (upto 4:1 Mux), Encoder, Decoder, SR Latch, JK FF, D FF, 1 Bit Shift Register with different design styles and their layouts	
2.0		Memory and Storage circuits	08
	2.1	ROM array, SRAM (operation, design strategy, leakage currents, read/write circuits), layout of SRAM	L
	2.2	DRAM (Operation of 1T, 3T, operation modes, leakage currents, refresh operation, Input-Output circuits), layout of DRAM	,
	2.3	Flash memory: NAND and NOR flash memory	
3.0		Data path design	08
	3.1	Full adder, Ripple carry adder, CLA adder, Carry Skip Adder, Carry Save Adder and carry select adder	
	3.2	Array Multiplier	1
	3.3	Barrel shifter	
4.0		VLSI Clocking, Protection and Interconnect	06
	4.1	CMOS clocking styles, pipelined systems, Clock generation, stabilization and distribution	,
	4.2	ESD protection, Input circuits, Output circuits, power distribution scheme	L
	4.3	Interconnect delay model, interconnect scaling and crosstalk	
5.0		Design methods	08
	5.1	Semicustom, Full custom design, ASIC	
	5.2	PLA, PLD, PAL, FPGA	
	5.3	System based and Data path design using HDL	
6.0	(1	RTL Design	08
	0.1	High Level state machines, RTL design process	-
	6.2	Soda dispenser machine, laser based distance measure, Sum of absolute	
	6.3	FIR filter design	
		Total	48

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons.
- 3. Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sons Publisher 2011.

- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 5. Samir Palnitkar,"Verilog HDL: A Guide to Digital Design and Synthesis", PHI, Second Edition
- 6. Douglas L. Perry "VHDL: Programming by Example", McGrawHill, 4th Edition

Reference Books:

- 1. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2nd Edition..
- 2. Volnei A. Pedroni, "Circuit Design and Simulation with VHDL", MIT Press, 2nd Edition

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	T	eaching S (Hrs	Scheme s.)		Credi	ts Assigne	d	
		Theory	Practi	cal Tutorial	Theory	Practi	cal Tuto	rial '	Fotal
ECCDLO	Radar	04			04				04
6022	Engineering								
				Examir	nation Sch	eme			
Subject	G L L		Theo	ory Marks					
Codo	Name	Internal assessment			End	Term	Practical	Oral	Total
Coue	1 (unite			Avg. Of Test	Sem.	Work	& Oral	01 a1	10141
		Test 1	Test2	1 and Test 2	Exam				
ECCDLO	Radar	20	20	$2\overline{0}$	80				100
6022	Engineering								

Prerequisties:

- Communication Fundamentals
- Electromagnetic field
- Transmission Lines and Antenna

Course objectives:

- To interpret Radar equations
- To explain different types of radar
- To design RADAR transmitters and receivers for given conditions

Course outcomes:

- Explain generalized concept of RADAR.
- Solve problems using radar equations.
- Describe different types of radar for specific application.
- Explain concept of tracking radar.
- Evaluate the design constraints for transmitter.
- Evaluate the design constraints for receiver.

Module	Unit No	Topics	Hrs.
<u> </u>	INU.	Introduction to Radar	04
	1.1	Basics Radar, Radar equation	
	1.2	Block Diagram, Radar Frequencies	-
	1.3	Applications of Radar	1
2.0		Radar Equation	08
	2.1	Detection of signal in noise	
	2.2	Receiver Noise and Signal-to-noise Ratio	
	2.3	Probability of detection and false alarm: Simple, complex Targets	
	2.4	Pulse Repetition Frequency	
3.0		MTI and Pulse Doppler Radar	12
	3.1	Introduction to Doppler and MTI radar, Doppler frequency shift	
	3.2	Simple CW Doppler radar, MTI radar block diagram	
	3.3	Delay line canceler	
	3.4	Moving-target-detection	
	3.5	Pulse Doppler radar	
4.0		Tracking Radar	08
	4.1	Monopulse tracking	
	4.2	Conical scan and sequential lobbing	1
	4.3	Limitation of tracking accuracy	
	4.4	Low angle tracking	
5.0		Radar Transmitters	10
	5.1	Radar RF power sources: Klystron, Travelling wave tube	
	5.2	Solid state RF power source: low power transmitter, high power transmitter. Advantages of solid state RF power source	
	53	Magnetron: coavial magnetron	
	5.4	Crossed field amplifiers: CFA operation modulating a CFA system	1
		implementation	
6.0		Radar Receivers	06
	6.1	Receiver noise figure	
	6.2	Superheterodyne Receiver	1
	6.3	Radar Display: Types of displays	
		Total	48

- 1. Merill Skolnik, -Introduction to RADAR Systems, Tata McGraw Hill, Third Edition
- 2. Merill Skolnik, -Radar Handbook, TataMcgraw Hill, Second Edition

Reference books:

- 1. Mark A. Richards, James A. Scheer, William A. Holm, "Principles of Modern Radar Basic Principals", Scitech Publishing.
- 2. Simon Kingsley, Shaun Quegon, "Understanding Radar Systems", Scientech Publishing Inc.
- 3. G. S. N. Raju, "Radar Engineering and Fundamentals of Navigational Aids", I. K International publishing House Pvt. Ltd.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs	Scheme s.)		Credi	ts Assigne	d	
		Theory	Practio	cal Tutorial	Theory	Practi	cal Tuto	rial '	Fotal
ECCDLO	Database	04			04				04
6023	Management								
	System								
				Examiı	nation Sch	eme			
Subject	Subject		Theo	ry Marks					
Code	Name	Inte	ernal asse	essment		Term	Practical	Oral	Total
Coue	1 (unite			Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	1 and Test 2	Exam				
ECCDLO	Database	20	20	20	80				100
6023	Management								
	System								

Prerequisites:

• Basic knowledge of programming

Course objectives:

- Learn and practice data modeling using the entity-relationship and developing database designs.
- Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access

Course outcomes:

- Understand the different issues involved in the design and implementation of a database system.
- Transform an information model into a relational database schema and to use a data definition language and/or utility to implement the schema using a DBMS.
- Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database.
- Understand the concepts of constraints, views, concurrency control, deadlock

Module	Unit	Topics						
<u>No.</u>	No.		0.0					
1.0		Introduction to Databases and Transactions	02					
	1.1	Introduction to databases, History of database system, Benefits of Database system over file system, relational databases, database						
		architecture, transaction management						
2.0		Data Models	06					
	2.1	The importance of data models, Basic building blocks, Business						
		rules, Evolution of data models (hierarchical, Network, Relational,						
		Entity relationship and object model), Degrees of data abstraction.						
3.0		Database Design, ER-Diagram and Unified Modeling Language	10					
	3.1	Database design and ER Model: overview, ER-Model, Constraints,						
		ER-Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational						
		Schemas, Introduction to UML Relational database model: Logical						
		view of data, keys, integrity rules. Relational Database design:						
		features of good relational database design, atomic domain and						
		Normalization (1NF, 2NF, 3NF, BCNF).						
4.0		Relational Algebra and Calculus	10					
	4.1	Relational algebra: introduction, Selection and projection, set						
		operations, renaming, Joins, Division, syntax, semantics. Operators,						
		grouping and ungrouping, relational comparison. Calculus: Tuple						
		relational calculus, Domain relational Calculus, calculus vs algebra,						
		computational capabilities.						
5.0		Constraints, Views and SQL	10					
	5.1	What is constraints, types of constrains, Integrity constraints, Views:						
		Introduction to views, data independence, security, updates on views,						
		comparison between tables and views SQL: data definition, aggregate						
		function, Null Values, nested sub queries, Joined relations. Triggers.						
6.0		Transaction management and Concurrency control	10					
	6.1	Transaction management: ACID properties, serializability and						
		concurrency control, Lock based concurrency control (2PL,						
		Deadlocks), Time stamping methods, optimistic methods, database						
		recovery management.						

- 1. A Silberschatz, H Korth, S Sudarshan, "Database System and Concepts", Fifth Edition McGraw-Hill
- 2. Rob, Coronel, "Database Systems", Seventh Edition, Cengage Learning.
- 3. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database System", Seventh Edition, Person.
- 4. G. K. Gupta: "Database Management Systems", McGraw Hill.

Reference Books:

- 1. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.
- 2. P.S. Deshpande, "SQL and PL/SQL for Oracle 11g, Black Book", Dreamtech Press
- 3. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

E-Resources:

- 1. https://www.tutorialspoint.com/dbms/index.htm
- 2. https://www.studytonight.com/dbms/
- 3. https://beginnersbook.com/2015/04/dbms-tutorial/
- 4. https://www.w3schools.in/dbms/
- 5. <u>https://www.tutorialcup.com/dbms</u>

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	T		Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial	Total
ECCDLO	Audio	04			04				04
6024	Processing								
				Exami	nation Sch	eme			
Subject	Subleat		Theor	y Marks					
Code	Name	Inte	ernal asses	ssment		Term	Practical	Oral	Total
Coue				Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	1 and Test 2	Exam				
ECCDLO	Audio	20	20	20	80				100
6024	Processing								

Prerequisites

• Signal System

Course objectives:

- To understand basic concepts and methodologies for the analysis and modeling of speech signal.
- To characterize the speech signal as generated by a speech production model.
- To understand the mechanism of speech and audio perception.
- To understand the digital representation of the speech waveform.
- To perform the analysis of speech signal using STFT.
- To extract the information of the speech or audio signals.
- To provide a foundation for developing application in this field.

Course outcomes:

- Demonstrate advanced Knowledge in Digital model representation of speech signal.
- Design and implement algorithms for processing speech and audio signals considering the properties of acoustic signals and human hearing.
- Analyze speech signal to extract the characteristic of vocal tract (formants) and vocal cords (pitch).
- Formulate and design a system for speech recognition and speaker recognition.
- Acquired knowledge about audio and speech signal estimation and detection.

Module	Unit No	Topics	Hrs.
1.0	110.	Introduction	06
	1.1	Review of digital signal and systems, Transforms representations of signal and systems, Sampling Theorem, Goertzel algorithm, Chirp algorithm.	
2.0		Digital Models for Speech signals	06
	2.1	Speech production and acoustic tube modeling, acoustic phonetics, anatomy, and physiology of the vocal tract and ear, hearing and perception.	
3.0		Digital Representations of the Speech Waveform	08
	3.1	Sampling speech signals, Instantaneous quantization, Adaptive quantization, Differential quantization, Delta Modulation, Differential PCM, Comparison of systems, Direct digital code conversion.	
4.0		Time Domain Models for Speech Processing	12
	4.1	Time dependent processing of speech, Short time energy and average magnitude, Short time average zero crossing rate, Speech V/S silence discrimination using energy & Zero crossings, Pitch period estimation, Short time autocorrelation function, Short time average magnitude difference function, Pitch period estimation using autocorrelation function, Median smoothing.	
5.0		Short time Fourier Transform	10
	5.1	Introduction- Definition and Properties, Fourier Transform Interpretation ,Linear Filtering Interpretation ,Sampling rates of X_n (e^{jw}) in Time and Frequency ,Filter Bank Summation Method of Short -Time Synthesis ,Overlap Addition Method for Short -Time Synthesis.	
6.0	(1	Speech and Audio Processing	06
	6.1	Vocoder- Voice excited channel vocoder, Voice excited and error signal excited LPC vocoders. Adaptive predictive coding of speech, Auditory Modeling. Audio signal processing for Music applications. Speech recognition pattern comparison techniques, Artificial Neural Network.	19
		lotal	48

- 1. L R Rabiner and S W Schafer, "Digital processing of speech signals", Pearson Education, 2009.
- 2. L R Rabiner, B H Juang, B Yegnanarayana, "Fundamentals of speech Recognition", Pearson Education, 1993.

Reference Books

- 1. Thomas F Quateri, "Discrete Time Speech Signal Processing "Pearson Edition, 2006.
- 2. Ben Gold and Nelson Morgan, "Speech & Audio Signal Processing", wiley, 2007.
- 3. Douglas O Shaughnessy, "Speech Communications", 2nd Edition, Oxford university press, 2000.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.
| Subject
Code | Subject
Name | Te | aching Sche
(Hrs.) | eme | e Credits Assigned | | | | |
|-----------------|---|--------|-----------------------|----------|--------------------|-----------------|----------|-------|--|
| | | Theory | Practical | Tutorial | Theory | TW/Pracs | Tutorial | Total | |
| ECL601 | Microcontrol
ler &
Applications
Laboratory | | 02 | | | 1 | | 1 | |

				Examir	nation Sch	eme			
Subject	Subject		Theory Marks						
Code	Name	Internal assessment			End Som	Term	Practical	Oral	Total
Couc		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	UT di	I otai
ECL601	Microcontrol ler & Applications Laboratory					25	25		50

- 1. Perform Arithmetic and Logical Operations
- 2. Transfer of data bytes between Internal and External Memory
- 3. Experiments based on General Purpose Input-Output, Timers, Interrupts, Delay, etc
- 4. Interfacing of LED, LCD, Stepper Motor, UART

Mini project based on any application related to 8051 or ARM7 can be implemented.

Note: Mini Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL602	Computer		02			1		1	
	Communicati								
	on Network								
	Laboratory								

				Examir	nation Sch	ieme				
Subject	Subject		The							
Codo	Name	Inte	essment	End	Term	Practical	Oral	Total		
Coue	1 (unite	Test 1	Tost?	Avg. Of Test	Sem.	Work	& Oral	UI al	Total	
		1050 1	10512	1 and Test 2	Exam					
ECL602	Computer					25	25		50	
	Communicatio									
	n Network									
	Laboratory									

- 1. Create a Virtual Network using NETKIT emulator and use networking commands like route, arp, netstat, traceroute, ping on created topology.
- 2. To study installation and configuration of NS 2.35 simulator.
- 3. Design a connectionless and connection oriented network topology for static routing and dynamic routing with the help of NS2 simulator.
- 4. To study three way handshaking process as well as working process for connection oriented Protocols like FTP, TELNET and analysing packets generated by using packet capturing tool like tcpdump
- 5. To implement stream socket that can serve multiple clients at the same time.
- 6. To study requirements and scope of Subnetting and Network Translation by using Netkit Emulator.
- 7. Case Study: To study installation of linux operating system by using DHCP, TFTP and any repository server like HTTP, FTP or NFS.

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL603	Antenna & Radio Wave Propagation Laboratory		02			1		1	

				Examir	nation Sch	eme			
Subject	Subject		Theory Marks						
Code	Name	Internal assessment			End Som	Term	Practical	Oral	Total
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sell. Exam	Work	& Oral	Oran	Total
ECL603	Antenna & Radio Wave Propagation Laboratory					25	25		50

- Introduction to different Antenna parameters and its importance
- Introduction to Different Antenna Types
- Study of Radiation pattern of dipole, folded dipole and Monopole antenna
- Study of Antenna Arrays N element array for given angle, Parametric study for various arrays parameters
- Study of Yagi-Uda Antenna
- Study of Aperture Antennas Horn / Reflector Antennas
- Design, implementation and Pattern measurement of Regular shape MSA
- Case Study of Recent reported variations of Antenna types (Paper from reputed journal is to be referred and thoroughly study and present the report, maximum four students per group)

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.) Theory Practical Tutorial			Credits Assigned				
					Theory	TW/Pracs	Tutorial	Total	
ECL604	Image		02			1		1	
	Processing								
	and Machine								
	Vision								
	Laboratory								

				Examiı	nation Sch	eme			
Subject	Subject		Theory Marks				Practical		
Code	Name	Internal assessment				Term		Oral	Total
Couc		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sell. Exam	Work	& Oral	Orai	Tuai
ECL604	Image					25	25		50
	Processing								
	and Machine								
	Vision								
	Laboratory								

• At least 8 programs written in C/MATLAB software

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6021	Digital VLSI Design Laboratory		02			1		1	

	Subject Name		Examination Scheme									
Subject			Theory Marks									
Code		Internal assessment End Som				Term	Practical	Oral	Total			
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	• Work	& Oral	01ui	Total			
ECLDLO	Digital VLSI					25			25			
6021	Design											
	Laboratory											

- 1. At least **08** experiments covering entire syllabus of Digital VLSI should be set to have well predefined inference and conclusion.
- **2.** The first 05 experiments as described below can be conducted by using Free or Professional tools
 - 01 experiments on Layouts of NAND and NOR gates to understand design rules
 - 01 experiment on Layout design of logical expression
 - 01 experiments on NAND/NOR gate implementation using at least 03 design styles
 - 02 experiment on Multiplexer/Decoder/Flip flop/Memory etc design
- 3. Last **03** experiments on HDL

Note: Small Project can be considered as a part of term-work. Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Те	aching Sche (Hrs.)	me Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECLDLO 6022	Radar Engineering Laboratory		02			1		1

	Subject Name		Examination Scheme									
Subject			Theory Marks									
Code		Internal assessment End Som				Term	Practical	Oral	Total			
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	• Work	& Oral	Orai	Tuai			
ECLDLO	Radar					25			25			
6022	Engineering											
	Laboratory											

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6023	Database Management System Laboratory		02			1		1	

Subject Code	Subject Name	Examination Scheme							
		Theory Marks							
		Inte	ernal ass	essment	Fnd Som	em. Term Work m	Practical & Oral	Oral	Total
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam				
ECLDLO	Database					25			25
6023	Management								
	System								
	Laboratory								

- Design a Database and create required tables. For e.g. Bank, College Database
- Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- Write a sql statement for implementing ALTER, UPDATE and DELETE
- Write the queries to implement the joins
- Write the query for implementing the following functions: MAX (), MIN (), AVG (), COUNT ()
- Write the query to implement the concept of Integrity constrains
- Write the query to create the views
- Perform the queries for triggers
- Perform the following operation for demonstrating the insertion, updation and deletion using the referential integrity constraints
- Write the query for creating the users and their role

List of Mini projects:

Note: These are few examples of mini projects; teachers may prepare their own list.

- 1. Library Management System
- 2. Hospital Management System
- 3. Pharmacy Management System
- 4. Human Resource Database Management System in Java
- 5. Student Database Management System
- 6. Employee Management System
- 7. Inventory Control Management Database

- 8. Pay Roll Management System
- 9. Railway System Database
- 10. Airline Reservation System
- 11. Blood Donation System
- 12. School Management System

Online Repository Sites:

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6024	Audio Processing Laboratory		02			1		1	

Subject Code	Subject Name	Examination Scheme								
		Theory Marks								
		Inte	ernal ass	essment	End Som	Term Work	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam					
ECLDLO	Audio					25			25	
6024	Processing									
	Laboratory									

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.